Molecular regulation of cardiomyocyte differentiation.
نویسندگان
چکیده
The heart is the first organ to form during embryonic development. Given the complex nature of cardiac differentiation and morphogenesis, it is not surprising that some form of congenital heart disease is present in ≈1 percent of newborns. The molecular determinants of heart development have received much attention over the past several decades. This has been driven in large part by an interest in understanding the causes of congenital heart disease coupled with the potential of using knowledge from developmental biology to generate functional cells and tissues that could be used for regenerative medicine purposes. In this review, we highlight the critical signaling pathways and transcription factor networks that regulate cardiomyocyte lineage specification in both in vivo and in vitro models. Special focus will be given to epigenetic regulators that drive the commitment of cardiomyogenic cells from nascent mesoderm and their differentiation into chamber-specific myocytes, as well as regulation of myocardial trabeculation.
منابع مشابه
Chibby, an Antagonist of the Wnt/ -Catenin Pathway, Facilitates Cardiomyocyte Differentiation of Murine Embryonic Stem Cells
Background—Embryonic stem cell (ESC)–derived cardiomyocytes are anticipated to serve as a useful source for future cell-based cardiovascular disease therapies. Research emphasis is currently focused on determining methods to direct the differentiation of ESCs to a large population of cardiomyocytes with high purity. To this aim, understanding the molecular mechanisms that control ESC-to-cardiom...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملEvaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells
Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...
متن کاملP-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs
Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...
متن کاملAn Efficient Protocol for Embryonic Carcinoma Cells P19 Differentiation to Cardiomyocytes Using Oxytocin as Inducer
Background: The capability of embryonic carcinoma cells P19 in differentiation to Cardiomyocyte was examined through inducing effects of Oxytocin (OT) and 5-Azacytidin (5Az) individually and compared with each other in laboratory condition. Materials and Methods: P19 Embryoid Bodies (EBs) was formed through hanging drops method. Then, EBs were treated with (5Az) or (OT) and the EB medium (Ct...
متن کاملMyocardin and Stat3 act synergistically to inhibit cardiomyocyte apoptosis
Signal transducer and activator of transcription 3 (Stat3) and Myocardin regulate cardiomyocyte differentiation, proliferation, and apoptosis. We report a novel aspect of the cellular function of Myocardin and Stat3 in the regulation of cardiomyocyte apoptosis. Myocardin and Stat3 showed anti-apoptotic function by increasing the expression of Bcl-2 while reducing expression of the pro-apoptotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 116 2 شماره
صفحات -
تاریخ انتشار 2015